MIKROSKOP
Mikroskop merupakan alat bantu yang memungkinkan kita dapat mengamati obyek yang berukuran sangat kecil. Hal ini membantu memecahkan persoalan manusia tentang organisme yang berukuran kecil. Mikroskop bisa kita temukan didunia pendidikan mulai dari jenjang pendidikan Sekolah Dasar sampai dengan Perguruan Tinggi dan instansi/lembaga lain yang memiliki laboratorium khususnya yang berkaitan dengan Ilmu Pengetahuan Alam (IPA/Biologi). Biologi adalah salah satu cabang ilmu yang mempelajari tentang makhluk hidup dan segala perikehidupannya.
Prinsip Kerja
Perbesaran total diperoleh dengan cara mengalikan perbesaran objektif dengan perbesaran okuler. Misalnya perbesaran total yang diperoleh dari objektif 40 kali dan okuler 10 kali ialah 40 x 10 = 400 kali. Sedangkan prinsip kerja/proses pemantulan cahaya/pengamatan pada miksorskop.
Perbesaran saat menggunakan objektif 100 kali, diafragma iris kondensor harus digunakan dalam keadaan terbuka penuh, karena objektif dengan perbesaran tiggi memebutuhkan lebih banyak cahaya. Perbesaran objektif 100 kali juga harus menggunakan minyak imersi. Hal ini bertujuan untuk mencegah hilangnya cahaya yang disebabkan oleh perbedaan bias (refraktif) antara kaca dan udara. Indeks bias udara 1, sedangkan kaca 1.56 dan indeks bias minyak imersi sama dengan kaca yaitu 1,56
B. Bagian-bagian Mikroskop
Mikroskop terdiri dari bagian optik dan non optik. Bagian optik meliputi lensa-lensa. Lensa-lensa mikroskop merupakan lensa gabungan (compound lenses) yang disatukan menjadi suatu unit kesatuan. Bagian non optik meliputi antara lain kaki, meja objek dan lengan.
Keterangan gambar :
1. Lensa okuler
2. tabung
3. Pengatur kasar/makrometer
4. Pengatur halus/mikrometer
5. Revolver
6. Lensa objektif
7. Lengan
8. MejaObjek
Lensa Okuler, lensa yang terletak pada ujung mikroskop, dekat mata (biasanya pembesaraanya 5 kali, 10 kali, 15 kali)
Lensa objektif, lensa yang terletak pada tabung, dan menempel pada revolver, lensa ini dengan pembesaran beraneka macam sesuai dengan model dan pabrik pembuatnya. Misalnya 4 kali, 10 kali, 40 kali, dan 100 kali.
Meja Preparat, tempat meletakkan objek (preparat yang akan dilihat.Kondensor, tersusun dari lensa gabungan yang berfungsi mengumpulkan sinar.
Diafragma, berfungsi mengatur banyaknya sinar yang masuk dengan mengatur bukaan iris. Letak diafragma melekat pada diafragma di bagian bawah. Pada mikroskop sederhana hanya ada diafragma tanpa konensor.
Cermin, mempunyai dua sisi, sisi cermin datar dan sisi cermin cekung, berfungsi memantulkan sinar dari sumber sinar.
Pengatur kasar dan Pengatur halus, komponen ini letaknya pada bagian lengan dan berfungsi untuk mengatur kedudukan lensa objektif terhadap objek yang akan dilihat.
Ada dua jenis mikroskop berdasarkan pada kenampakan obyek yang diamati, yaitu mikroskop dua dimensi (mikroskop cahaya) dan mikroskop tiga dimensi (mikroskop stereo). Sedangkan berdasarkan sumber cahayanya, mikroskop dibedakan menjadi mikroskop cahaya dan mikroskop elektron.
A. Mikroskop Cahaya
Mikroskop cahaya mempunyai perbesaran maksimum 1000 kali. Mikroskop mempunyai kaki yang berat dan kokoh dengan tujuan agar dapat berdiri dengan stabil. Mikroskop cahaya memiliki tiga sistem lensa, yaitu lensa obyektif, lensa okuler, dan kondensor. Lensa obyektif dan lensa okuler terletak pada kedua ujung tabung mikroskop. Lensa okuler pada mikroskop bisa berbentuk lensa tunggal (monokuler) atau ganda (binokuler). Pada ujung bawah mikroskop terdapat tempat dudukan lensa obyektif yang bisa dipasangi tiga lensa atau lebih. Di bawah tabung mikroskop terdapat meja mikroskop yang merupakan tempat preparat. Sistem lensa yang ketiga adalah kondensor. Kondensor berperan untuk menerangi obyek dan lensa-lensa mikroskop yang lain.
Pada mikroskop konvensional, sumber cahaya masih berasal dari sinar matahari yang dipantulkan dengan suatu cermin datar ataupun cekung yang terdapat dibawah kondensor. Cermin ini akan mengarahkan cahaya dari luar kedalam kondensor. Pada mikroskop modern sudah dilengkapi lampu sebagai pengganti sumber cahaya matahari.
Lensa obyektif bekerja dalam pembentukan bayangan pertama. Lensa ini menentukan struktur dan bagian renik yang akan terlihat pada bayangan akhir. Ciri penting lensa obyektif adalah memperbesar bayangan obyek dan mempunyai nilai apertura (NA). Nilai apertura adalah ukuran daya pisah suatu lensa obyektif yang akan menentukan daya pisah spesimen, sehingga mampu menunjukkan struktur renik yang berdekatan sebagai dua benda yang terpisah.
Lensa okuler, merupakan lensa mikroskop yang terdapat di bagian ujung atas tabung, berdekatan dengan mata pengamat. Lensa ini berfungsi untuk memperbesar bayangan yang dihasilkan oleh lensa obyektif. Perbesaran bayangan yang terbentuk berkisar antara 4 – 25 kali.
Lensa kondensor, berfungsi untuk mendukung terciptanya pencahayaan pada obyek yang akan difokus, sehingga bila pengaturannya tepat akan diperoleh daya pisah maksimal. Jika daya pisah kurang maksimal, dua benda akan tampak menjadi satu. Perbesaran akan kurang bermanfaat jika daya pisah mikroskop kurang baik.
B. Mikroskop Stereo
Mikroskop stereo merupakan jenis mikroskop yang hanya bisa digunakan untuk benda yang berukuran relatif besar. Mikroskop stereo mempunyai perbesaran 7 hingga 30 kali. Benda yang diamati dengan mikroskop ini dapat terlihat secara tiga dimensi. Komponen utama mikroskop stereo hampir sama dengan mikroskop cahaya. Lensa terdiri atas lensa okuler dan lensa obyektif. Beberapa perbedaan dengan mikroskop cahaya adalah: (1) ruang ketajaman lensa mikroskop stereo jauh lebih tinggi dibandingkan dengan mikroskop cahaya sehingga kita dapat melihat bentuk tiga dimensi benda yang diamati, (2) sumber cahaya berasal dari atas sehingga obyek yang tebal dapat diamati. Perbesaran lensa okuler biasanya 10 kali, sedangkan lensa obyektif menggunakan sistem zoom dengan perbesaran antara 0,7 hingga 3 kali, sehingga perbesaran total obyek maksimal 30 kali. Pada bagian bawah mikroskop terdapat meja preparat. Pada daerah dekat lensa obyektif terdapat lampu yang dihubungkan dengan transformator. Pengatur fokus obyek terletak disamping tangkai mikroskop, sedangkan pengatur perbesaran terletak diatas pengatur fokus.
C. Mikroskop Elektron
Mikroskop elektron adalah sebuah mikroskop yang mampu untuk melakukan pembesaran objek sampai 2 juta kali, yang menggunakan elektro statik dan elektro magnetik untuk mengontrol pencahayaan dan tampilan gambar serta memiliki kemampuan pembesaran objek serta resolusi yang jauh lebih bagus daripada mikroskop cahaya. Mikroskop elektron ini menggunakan jauh lebih banyak energi dan radiasi elektromagnetik yang lebih pendek dibandingkan mikroskop cahaya.
Diagram transmisi dari sebuah mikroskop electron
Fenomena Elektron
Pada tahun 1920 ditemukan suatu fenomena di mana elektron yang dipercepat dalam suatu kolom elektromagnet, dalam suasana hampa udara (vakum) berkarakter seperti cahaya, dengan panjang gelombang yang 100.000 kali lebih kecil dari cahaya. Selanjutnya ditemukan juga bahwa medan listrik dan medan magnet dapat berperan sebagai lensa dan cermin seperti pada lensa gelas dalam mikroskop cahaya.
Jenis-jenis mikroskop Elektron
1. Mikroskop Transmisi Elektron (TEM)
Mikroskop transmisi elektron (Transmission electron microscope-TEM)adalah sebuah mikroskop elektron yang cara kerjanya mirip dengan cara kerja proyektor slide, di mana elektron ditembuskan ke dalam obyek pengamatan dan pengamat mengamati hasil tembusannya pada layar.
1.1 Sejarah Penemuan
Seorang ilmuwan dari universitas Berlin yaitu Dr. Ernst Ruska [1] menggabungkan penemuan ini dan membangun mikroskop transmisi elektron (TEM) yang pertama pada tahun 1931. Untuk hasil karyanya ini maka dunia ilmu pengetahuan menganugerahinya hadiah Penghargaan Nobel dalam fisika pada tahun 1986. Mikroskop yang pertama kali diciptakannya adalah dengan menggunakan dua lensa medan magnet, namun tiga tahun kemudian ia menyempurnakan karyanya tersebut dengan menamahkan lensa ketiga dan mendemonstrasikan kinerjanya yang menghasilkan resolusi hingga 100 nanometer (nm) (dua kali lebih baik dari mikroskop cahaya pada masa itu).
1.2 Cara Kerja
Mikroskop transmisi eletron saat ini telah mengalami peningkatan kinerja hingga mampu menghasilkan resolusi hingga 0,1 nm (atau 1 angstrom) atau sama dengan pembesaran sampai satu juta kali. Meskipun banyak bidang-bidang ilmu pengetahuan yang berkembang pesat dengan bantuan mikroskop transmisi elektron ini.
Adanya persyaratan bahwa "obyek pengamatan harus setipis mungkin" ini kembali membuat sebagian peneliti tidak terpuaskan, terutama yang memiliki obyek yang tidak dapat dengan serta merta dipertipis. Karena itu pengembangan metode baru mikroskop elektron terus dilakukan.
1.3 Preparasi sediaan
Agar pengamat dapat mengamati preparat dengan baik, diperlukan persiapan sediaan dengan tahap sebagai berikut : 1. melakukan fiksasi, yang bertujuan untuk mematikan sel tanpa mengubah struktur sel yang akan diamati. fiksasi dapat dilakukan dengan menggunakan senyawa glutaraldehida atau osmium tetroksida. 2. pembuatan sayatan, yang bertujuan untuk memotong sayatan hingga setipis mungkin agar mudah diamati di bawah mikroskop. Preparat dilapisi dengan monomer resin melalui proses pemanasan, kemudian dilanjutkan dengan pemotongan menggunakan mikrotom. Umumnya mata pisau mikrotom terbuat dari berlian karena berlian tersusun dari atom karbon yang padat. Oleh karena itu, sayatan yang terbentuk lebih rapi. Sayatan yang telah terbentuk diletakkan di atas cincin berpetak untuk diamati. 3. pelapisan/pewarnaan, bertujuan untuk memperbesar kontras antara preparat yang akan diamati dengan lingkungan sekitarnya. Pelapisan/pewarnaan dapat menggunakan logam berat seperti uranium dan timbal.
2. Mikroskop pemindai transmisi elektron (STEM)
Mikroskop pemindai transmisi elektron (STEM)adalah merupakan salah satu tipe yang merupakan hasil pengembangan dari mikroskop transmisi elektron (TEM).Pada sistem STEM ini, electron menembus spesimen namun sebagaimana halnya dengan cara kerja SEM, optik elektron terfokus langsung pada sudut yang sempit dengan memindai obyek menggunakan pola pemindaian dimana obyek tersebut dipindai dari satu sisi ke sisi lainnya (raster) yang menghasilkan lajur-lajur titik (dots)yang membentuk gambar seperti yang dihasilkan oleh CRT pada televisi / monitor.
3. Mikroskop pemindai elektron (SEM)
Mikroskop pemindai elektron (SEM) yang digunakan untuk studi detil arsitektur permukaan sel (atau struktur jasad renik lainnya), dan obyek diamati secara tiga dimensi.
3.1 Sejarah penemuan
Tidak diketahui secara persis siapa sebenarnya penemu Mikroskop pemindai elektron (Scanning Electron Microscope-SEM) ini. Publikasi pertama kali yang mendiskripsikan teori SEM dilakukan oleh fisikawan Jerman dR. Max Knoll pada 1935, meskipun fisikawan Jerman lainnya Dr. Manfred von Ardenne mengklaim dirinya telah melakukan penelitian suatu fenomena yang kemudian disebut SEM hingga tahun 1937. Mungkin karena itu, tidak satu pun dari keduanya mendapatkan hadiah nobel untuk penemuan itu.
Pada 1942 tiga orang ilmuwan Amerika yaitu Dr. Vladimir Kosma Zworykin[2], Dr. James Hillier, dan Dr. Snijder, benar-benar membangun sebuah mikroskop elektron metode pemindaian (SEM) dengan resolusi hingga 50 nm atau magnifikasi 8.000 kali. Sebagai perbandingan SEM modern sekarang ini mempunyai resolusi hingga 1 nm atau pembesaran 400.000 kali. Mikroskop elektron cara ini memfokuskan sinar elektron (electron beam) di permukaan obyek dan mengambil gambarnya dengan mendeteksi elektron yang muncul dari permukaan obyek.
3.2 Cara Kerja
Cara terbentuknya gambar pada SEM berbeda dengan apa yang terjadi pada mikroskop optic dan TEM. Pada SEM, gambar dibuat berdasarkan deteksi elektron baru (elektron sekunder) atau elektron pantul yang muncul dari permukaan sampel ketika permukaan sampel tersebut dipindai dengan sinar elektron. Elektron sekunder atau elektron pantul yang terdeteksi selanjutnya diperkuat sinyalnya, kemudian besar amplitudonya ditampilkan dalam gradasi gelap-terang pada layar monitor CRT (cathode ray tube). Di layar CRT inilah gambar struktur obyek yang sudah diperbesar bisa dilihat. Pada proses operasinya, SEM tidak memerlukan sampel yang ditipiskan, sehingga bisa digunakan untuk melihat obyek dari sudut pandang 3 dimensi.
3.3 Preparasi sediaan
Agar pengamat dapat mengamati preparat dengan baik, diperlukan persiapan sediaan dengan tahap sebagai berikut : 1. melakukan fiksasi, yang bertujuan untuk mematikan sel tanpa mengubah struktur sel yang akan diamati. fiksasi dapat dilakukan dengan menggunakan senyawa glutaraldehida atau osmium tetroksida. 2. dehidrasi, yang bertujuan untuk memperendah kadar air dalam sayatan sehingga tidak mengganggu proses pengamatan. 3. pelapisan/pewarnaan, bertujuan untuk memperbesar kontras antara preparat yang akan diamati dengan lingkungan sekitarnya. Pelapisan/pewarnaan dapat menggunakan logam mulia seperti emas dan platina.
4. Mikroskop Pemindai lingkungan electron (ESEM)
Mikroskop ini adalah merupakan pengembangan dari SEM, yang dalam bahasa Inggrisnya disebut Environmental SEM (ESEM) yang dikembangkan guna mengatasi obyek pengamatan yang tidak memenuhi syarat sebagai obyek TEM maupun SEM.
Obyek yang tidak memenuhi syarat seperti ini biasanya adalah bahan alami yang ingin diamati secara detil tanpa merusak atau menambah perlakuan yang tidak perlu terhadap obyek yang apabila menggunakat alat SEM konvensional perlu ditambahkan beberapa trik yang memungkinkan hal tersebut bisa terlaksana.
4.1 Sejarah Penemuan
Teknologi ESEM ini dirintis oleh Gerasimos D. Danilatos, seorang kelahiran Yunani yang bermigrasi ke Australia pada akhir tahun 1972 dan memperoleh gelar Ph.D dari Universitas New South Wales (UNSW) pada tahun 1977 dengan judul disertasi Dynamic Mechanical Properties of Keratin Fibres .
Dr. Danilatos ini dikenal sebagai pionir dari teknologi ESEM, yang merupakan suatu inovasi besar bagi dunia mikroskop elektron serta merupakan kemajuan fundamental dari ilmu mikroskopi.
Deengan teknologi ESEM ini maka dimungkinkan bagi seorang peneliti untuk meneliti sebuah objek yang berada pada lingkungan yang menyerupai gas yang betekanan rendah (low-pressure gaseous environments) misalnya pada 10-50 Torr serta tingkat humiditas diatas 100%. Dalam arti kata lain ESEM ini memungkinkan dilakukannya penelitian obyek baik dalam keadaan kering maupun basah.
Sebuah perusahaan di Boston yaitu Electro Scan Corporation pada tahun 1988 ( perusahaan ini diambil alih oleh Philips pada tahun 1996- sekarang bernama FEI Company [3] telah menemukan suatu cara guna menangkap elektron dari obyek untuk mendapatkan gambar dan memproduksi muatan positif dengan cara mendesain sebuah detektor yang dapat menangkap elektron dari suatu obyek dalam suasana tidak vakum sekaligus menjadi produsen ion positif yang akan dihantarkan oleh gas dalam ruang obyek ke permukaan obyek. Beberapa jenis gas telah dicoba untuk menguji teori ini, di antaranya adalah beberapa gas ideal, gas , dan lain lain. Namun, yang memberikan hasil gambar yang terbaik hanyalah uap air. Untuk sample dengan karakteristik tertentu uap air kadang kurang memberikan hasil yang maksimum.
Pada beberapa tahun terakhir ini peralatan ESEM mulai dipasarkan oleh para produsennya dengan mengiklankan gambar-gambar jasad renik dalam keadaan hidup yang selama ini tidak dapat terlihat dengan mikroskop elektron.
4.2 Cara Kerja
Pertama-tama dilakukan suatu upaya untuk menghilangkan penumpukan elektron (charging) di permukaan obyek, dengan membuat suasana dalam ruang sample tidak vakum tetapi diisi dengan sedikit gas yang akan mengantarkan muatan positif ke permukaan obyek, sehingga penumpukan elektron dapat dihindari.
Hal ini menimbulkan masalah karena kolom tempat elektron dipercepat dan ruang filamen di mana elektron yang dihasilkan memerlukan tingkat vakum yang tinggi. Permasalahan ini dapat diselesaikan dengan memisahkan sistem pompa vakum ruang obyek dan ruang kolom serta filamen, dengan menggunakan sistem pompa untuk masing-masing ruang. Di antaranya kemudian dipasang satu atau lebih piringan logam platina yang biasa disebut (aperture) berlubang dengan diameter antara 200 hingga 500 mikrometer yang digunakan hanya untuk melewatkan elektron , sementara tingkat kevakuman yang berbeda dari tiap ruangan tetap terjaga.
5.1 Mikroskop refleksi Elektron (REM)
Yang dalam bahasa Inggrisnya disebut Reflection electron microscope (REM), adalah mikroskop elektron yang memiliki cara kerja yang serupa sebagaimana halnya dengan cara kerja TEM namun sistem ini menggunakan deteksi pantulan elektron pada permukaan objek. Tehnik ini secara khusus digunakan dengan menggabungkannya dengan tehnik Refleksi difraksi elektron energi tinggi (Reflection High Energy Electron Diffraction) dan tehnik Refleksi pelepasan spektrum energi tinggi (reflection high-energy loss spectrum - RHELS)
5. 2. Spin-Polarized Low-Energy Electron Microscopy (SPLEEM)
Spin-Polarized Low-Energy Electron Microscopy (SPLEEM) ini adalah merupakan Variasi lain yang dikembangkan dari teknik yang sudah ada sebelumnya, yang digunakan untuk melihat struktur mikro dari medan magnet (en:magnetic domains).
D. Mengatur Besarnya Obyek
Perbesaran bayangan dari suatu obyek dapat diketahui dari angka perbesaran lensa obyektif dan lensa okuler. Ukuran suatu benda dapat diketahui dengan membandingkan terhadap ukuran bidang pandang. Hal ini dapat dikerjakan dengan beberapa langkah berikut: letakkan penggaris plastik berskala mm diatas meja obyek dan perkirakan diameter bidang pandang tersebut, dan catat perbesaran lensa obyektifnya. Ubahlah lensa obyektif dengan lensa obyektif perbesaran kuat dan tentukan diameter bidang pandangnya dengan rumus berikut:
Ǿ ok = Ǿ ol x pl/pk dimana :
Ǿok = diameter bidang pandang dengan obyektif perbesaran kuat.
Ǿol = diameter bidangpandang dengan obyektif perbesaran lemah
pk = perbesaran lensa obyektif kuat, pl = perbesaran lensa obyektif lemah
E. Mempersiapkan Preparat
Untuk membuat preparat non-permanen dilakukan sebagai berikut. Letakkan medium (berupa setetes air) diatas gelas obyek, dan letakkan bahan yang akan diamati didalam medium. Selanjutnya tutuplah dengan kaca penutup. Usahakan agar tidak terdapat gelembung udara pada medium. Hal ini dapat diusahakan dengan beberapa langkah berikut: pegang kaca penutup dengan posisi 45o terhadap gelas obyek, sentuhkan tepi bawah kaca penutup pada permukaan medium dan perlahan-lahan rebahkan sehingga kaca penutup terletak di atas kaca obyek. Jika masih ada gelembung udara ulangi pekerjaan tersebut sampai tidak ada gelembung udara. Amati preparat yang anda buat dibawah mikroskop dengan terlebih dahulu menggunakan perbesaran lemah (10×10), kalau sudah diketahui obyek yang akan diamati kemudian memakai perbesaran kuat (10×20 atau 10×40).
ALAT DAN BAHAN
Alat :
1. Mikroskop cahaya dan mikroskop stereo
2. Pipet dan silet*
3. Pinset
4. Gelas obyek dan kaca penutup*
5. Cawan petri
Bahan :
1. Potongan kertas berhuruf “A”, “d”,
2. Organisme berukuran kecil (semut, bunga rumput, dan lainnya)
3. Butir-butir pati kentang
4. Air dan larutan iodine
D. Mengatur Besarnya Obyek
Perbesaran bayangan dari suatu obyek dapat diketahui dari angka perbesaran lensa obyektif dan lensa okuler. Ukuran suatu benda dapat diketahui dengan membandingkan terhadap ukuran bidang pandang. Hal ini dapat dikerjakan dengan beberapa langkah berikut: letakkan penggaris plastik berskala mm diatas meja obyek dan perkirakan diameter bidang pandang tersebut, dan catat perbesaran lensa obyektifnya. Ubahlah lensa obyektif dengan lensa obyektif perbesaran kuat dan tentukan diameter bidang pandangnya dengan rumus berikut:
Ǿ ok = Ǿ ol x pl/pk dimana :
Ǿok = diameter bidang pandang dengan obyektif perbesaran kuat.
Ǿol = diameter bidangpandang dengan obyektif perbesaran lemah
pk = perbesaran lensa obyektif kuat, pl = perbesaran lensa obyektif lemah
1. $an kertas huruf “d”
B. Mengamati Butir Pati
1. Keriklah sekerat umbi kentang dengan jarum atau ujung silet sehingga cairannya keluar.
2. Teteskan cairan tersebut pada kaca obyek, dan tutup dengan kaca penutup.
3. Amati dibawah mikroskop struktur butir-butir pati tersebut.
4. Teteskan larutan Iodine pada tepi kanan kaca penutup dan pada tepi kiri kaca penutup tempelkan kertas hisap, dengan demikian larutan iodine tersebut akan masuk kedalam preparat dan menyebar ke seluruh bagian.
5. Amati dibawah mikroskop dan gambarkan butir-butir pati tersebut.
C. Penggunaan Mikroskop Stereo
1. Tempatkan mikroskop stereo beserta transformatornya, hubungkan dengan sumber listrik.
2. Tekan tombol “on” pada transformator, pergunakan voltase yang ada pada transformator sesuai keperluan. Ingat. lampu mempunyai umur tertentu, oleh karena itu nyalakan lampu sesuai keperluan saja.
3. Letakkan spesimen pada cawan petri.
4. Amati dengan mikroskop dengan perbesaran lemah kemudian perbesaran kuat.
5. Amati dan catat pada laporan anda (jika semut: hitung jumlah kaki atau antenanya, dan jika bunga: hitung jumlah stamen).
D. Untuk Diperhatikan !
1. Peganglah erat-erat lengan mikroskop dengan tangan kanan, sedang tangan kiri digunakan untuk menyangga kaki mikroskop.
2. Meja preparat tetap horisontal untuk mencegah agar preparat tidak jatuh
3. Bersihkan lensa dengan kertas lensa/tissue
4. Pengamatan dengan menggunakan dua mata (kalau mikroskop dengan dua lensa okuler)
5. Gunakan perbesaran lemah dulu, kemudian setelah obyek yang akan anda amati ditemukan, gunakan perbesaran yang lebih besar
6. Bersihkan semua kotoran yang ada pada mikroskop dengan menggunakan kertas tissue.
Selasa, 11 Mei 2010
Langganan:
Posting Komentar (Atom)
Tidak ada komentar:
Posting Komentar